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Abstract. The complex-mass (finite-width) 0++ nonet and decuplet are investigated by means of the
exotic commutator method. The hypothesis of the vanishing of the exotic commutators leads to the sys-
tem of master equations (ME). Solvability conditions of these equations define relations between the
complex masses of the nonet and decuplet mesons which, in turn, determine relations between the real
masses (mass formulae), as well as between the masses and widths of the mesons. Mass formulae are
independent of the particle widths. The masses of the nonet and decuplet particles obey simple order-
ing rules. The nonet mixing angle and the mixing matrix of the isoscalar states of the decuplet are
completely determined by solution of ME; they are real and do not depend on the widths. All known
scalar mesons with the mass smaller than 2000 MeV (excluding σ(600)) and one with the mass 2200÷
2400 MeV belong to two multiplets: the nonet (a0(980), K0(1430), f0(980), f0(1710)) and the decuplet
(a0(1450), K0(1950), f0(1370), f0(1500), f0(2200)/f0(2330)). It is shown that the famed anomalies of the
f0(980) and a0(980) widths arise from an extra “kinematical” mechanism, suppressing decay, which is not
conditioned by the flavor coupling constant. Therefore, they do not justify rejecting the qq structure of them.
A unitary singlet state (glueball) is included into the higher lying multiplet (decuplet) and is divided among
the f0(1370) and f0(1500) mesons. The glueball contents of these particles are totally determined by the
masses of decuplet particles. Mass ordering rules indicate that the meson σ(600) does not mix with the nonet
particles.

1 Introduction

Thirty years ago David Morgan posed the question of
the “respectability” of scalar mesons as qq̄ systems [1].
He attempted to find an affirmative answer to this ques-
tion. Soon after that, people became sceptical about such
a possibility. Primarily, the main reason was the sup-
posed domination of the f0(980)→ KK̄ decay channel.
Later, after establishing that this decay is not dominat-
ing (PDG have been announcing domination of the mode
f0(980)→ ππ since 1982), the disagreement between the
measured Γ exp [2] and the predicted Γ qq̄ [3] total width of
the decay:

Γ exp = 40÷100MeV, (1)

Γ qq̄ = 500÷1000MeV (2)

was recognized as a main argument against the qq̄ struc-
ture of the f0(980) meson. Probably, this argument was
never contested.
So a question arose as to the internal structure of the

f0(980), a0(980) and other mesons forming a scalar mul-
tiplet. Many alternative models were created to explain
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this multiplet. The most prominent ones are exotic models
describing scalar mesons totally or partly as qqq̄q̄ states.
These models differ from one another with physical in-
terpretation and/or construct the multiplet from differ-
ent particles. It is not the purpose of this paper to dis-
cuss these issues. In the extensive bibliography introducing
these models the interested reader is referred to a few rep-
resentative papers [4–8]. It should be, however, recognized
that the views of many authors evolved remarkably during
the time elapsed. We abandon discussing them, because
we question the validity of the argument that the disagree-
ment between the numbers of (1) and (2) can be regarded
as evidence against the qq̄ nature of the scalar mesons.
Consequently, we question the exotic models of the scalar
nonet.
Although the arguments against rejection of the qq̄

model will be set forth later, it is worth noting here that
the disagreement between (1) and (2) by itself does not cer-
tify a contradiction. The contradiction only appears if one
admits that the observed width is determined entirely by
the flavor coupling constant. Such a point of view is widely
shared, in spite of many examples of hadronic decays re-
vealing additional suppression. The reason is that there is
no known mechanism which could suppress the f0(980) de-
cay. However, as we argue below, such a mechanism must
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exist. Its indispensability is clearly seen if the mesons are
described as finite-width nonet states.
Below, we use the notion of the “flavor width” (FW)

which is distinguished from the “hadronic width” (HW).
It has been shown that the total FW which is determined
by the flavor coupling constant is reduced to an experimen-
tally observed total HW due to some “kinematical” sup-
pression mechanism [9]. Thus the number from (1) is the
HW, while the number from (2) is the FW of the f0(980)
meson.
Another kind of exotics is being searched. According

to a wide spread opinion, there should exist a glueball
at � 1.5GeV [10–17]. This particle is not expected to
be a pure state – it should be a mixture of the glue-
ball and the isoscalar qq̄ state of a nonet. That creates
a decuplet. The abundance of the scalar mesons suggests
that there exists more than one multiplet – we may ex-
pect a nonet and a decuplet. The problem is how the
particles are distributed among them. A solution can be
found if we exploit the accessible knowledge about these
multiplets.
That can be achieved by means of the exotic commu-

tator method (ECM) [18]. Using this method a system
of algebraic equations (“master equations” (ME)) was de-
rived for the octet contents of the isoscalar members of the
zero-width meson nonet and decuplet [18, 19]. Solution of
the ME gives full attainable information about these mul-
tiplets. For the nonets it clearly distinguishes three kinds of
them: Gell-Mann–Okubo (GMO), Schwinger (S) and ide-
ally mixed (I) ones. The differences matter in the analysis
of the data. But ME gives not only the old-standing rela-
tions, as the mass formulae and an expression for the mix-
ing angle of the nonet, but also something new (derived, as
yet, only in the ECM approach): the nonet and decuplet
mass ordering rules, the decuplet mass formula and the de-
cuplet mixing matrix. The latter follows directly from the
solution of the ME, without additional assumptions which
are needed in other approaches for diagonalizing the un-
physical mass operator. The mass ordering rules help in
composing the multiplets of scalar mesons and make the
description of the whole collection of the scalar mesons
simple and transparent.
This method was also applied to describing a finite-

width (complex-mass) mesons. Many nonets with different
JPC were fitted [9]. The fits demonstrate that most of
the observed nonets are the S ones. Besides, extension of
the ME to the complex mass reveals that the widths of
the S nonet mesons depend linearly on the masses of the
particles. The slope of the line is negative for all known
nonets. The linearity follows from the flavor properties of
the nonet. It is broken in all observed low mass nonets. The
mechanism of the breaking is “kinematical” – it does not
depend on the flavor coupling constant. This fact is import-
ant for the interpretation of the suppression of the f0(980)
and a0(980) meson decays.
The part of the present paper concerning the nonet of

0++ mesons is a continuation of the previous analysis [9].
We justify the status and confirm the properties of the
scalar nonet which were admitted to be still controversial
there.

Our purpose is also to discuss the fit of the finite-width
decuplet of the 0++ mesons, but first we have to make ME
predictions for this multiplet. Therefore, we begin with re-
calling the ME procedure, fixing also the notation.

2 Exotic commutators and master equations
for octet contents of the physical isoscalar
states

The following sequence of exotic commutators is assumed
to vanish [18]:

[
Ta,
djTb
dtj

]
= 0 (j = 1, 2, 3, ...) , (3)

where T is a SU(3)F generator, t is the time and (α, β)
is an exotic combination of indices, i.e., such that the op-
erator [Tα, Tβ ] does not belong to the octet representa-
tion. Substituting dTdt = i[H,T ], and using the infinite mo-
mentum approximation for one-particle hamiltonian H =√
m2+p2, we transform (3) into the system

[Tα, [m̂2, Tβ]] = 0,

[Tα, [m̂2, [m̂2, Tβ]]] = 0,

[Tα, [m̂2, [m̂2, [m̂2, Tβ ]]]] = 0, (4)

...

where m̂2 is the squared-mass operator.
For the matrix elements of the commutators (4) be-

tween one-particle states (we assume one-particle initial,
final and intermediate states) we obtain the sequence of
equations involving the expressions 〈z8|(m2)j |z8〉 with dif-
ferent powers j = 1, 2, 3, .. (z8 is the isoscalar state belong-
ing to the octet). Solving these equations, we obtain the
sequence of formulae for a multiplet of the light mesons.We
find

〈z8 | ˆ(m2c)
j
| z8〉=

1

3
ajc+

2

3
bjc (j = 1, 2, 3, ...). (5)

Here m̂2c is assumed to be a complex-mass squared opera-
tor [9]:

m̂2c = m̂
2− im̂Γ̂ . (6)

This operator can be diagonalized and has orthogonal
eigenvectors. For the complex masses of the individual par-
ticles we use the following notation:

ac = a− iα= (ma)
2− imaΓa,

Kc =K− iκ= (mK)
2− imKΓK ,

zj = xj − iyj = (mj)
2− imjΓj ,

z8 = x8− iy8 = (m8)
2− im8Γ8,

bc = b− iβ = (mb)
2− imbΓb. (7)

The symbols a and K mean isotriplet and isodoublet me-
son respectively; zj are isoscalarmesons; the real and imag-
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inary parts of the subsidiary complex masses z8 and bc
are

x8 =
1

3
(4K−a), y8 =

1

3
(4κ−α), (8)

b= 2K−a, β = 2κ−α. (9)

Numbering of the physical isoscalar mesons zi is chosen
such that their masses obey the inequality

xi < xi+1. (10)

The octet state |z8〉 can be expressed by the physical
isosinglet states |zi〉. For the nonet we substitute into (5)
the expression

|z8〉= l1|z1〉+ l2|z2〉, (11)

and for the decuplet

|z8〉= l1|z1〉+ l2|z2〉+ l3|z3〉. (12)

The coefficients li are complex numbers satisfying

Σ|li|
2 = 1. (13)

As a result, we obtain the linear system ofmaster equations
(ME) determining the octet contents |li|2 of the isoscalar zi
states:

Σ|li|
2zji =

1

3
ajc+

2

3
bjc (j = 0, 1, 2, 3, ..), (14)

where the equation for j = 0 takes into account the con-
dition (13). ME can be applied to analyzing the nonet
and decuplet of the real and complex-mass mesons in the
broken SU(3)F symmetry. The mass formulae arise if the
number of equations exceeds the number of unknown coef-
ficients li. They play the role of solvability condition of the
system (14).

3 Nonet of 0++ mesons – back to qq̄

3.1 Three kinds of the nonets

Solutions of the ME (14) for |l1|2, |l2|2 and the mass formu-
lae for a nonet have already been analyzed [9]. We report
on the main points of that analysis.
The system (14) can be solved if the number of equa-

tions ≥ 2. In such cases |l1|2 and |l2|2 can be determined
from the first two of them. We find

|l1|
2 =
1

3

(z2−ac)+2(z2− bc)

z2− z1
, (15)

|l2|
2 =
1

3

(ac− z1)+2(bc− z1)

z2− z1
. (16)

Then the subsequent equations have to be identically satis-
fied. These identities are complex-mass formulae. A differ-
ent number of mass formulae define different kinds of the
nonet.

No condition of solvability and, respectively, no mass
formula exists for the system of the first two ME. This sys-
tem can be written in the form

z1 sin
2 θ+ z2 cos

2 θ = z8, (17)

where θ is mixing angle and z8 is the Gell-Mann–Okubo
mass squared:

z8 ≡
1

3
ac+

2

3
bc. (18)

The formula (17) is sometimes considered as the nonet
mass formula. Such a nonet is called the GMO one. It arises
for the system of two equations (14).
For the system of three equations (14) we get one mass

formula:

(ac− z1)(ac− z2)+2(bc− z1)(bc− z2) = 0. (19)

This is the Schwinger (S) complex-mass formula.
From the system of four equations (14), besides the

mass formula (19), we obtain

ac(ac− z1)(ac− z2)+2bc(bc− z1)(bc− z2) = 0. (20)

From (19) and (20), choosing the numbers of zi according
to the rule (10), we get

z1 = ac, z2 = bc, |l1|
2 =
1

3
, |l2|

2 =
2

3
. (21)

This is a complex-mass ideally mixed nonet.
The system including one more equation (14) gives one

more mass formula:

a2c(ac− z1)(ac− z2)+2b
2
c(bc− z1)(bc− z2) = 0, (22)

which is satisfied by the ideally mixed nonet. It is now ob-
vious that also the subsequent equations of the system (14)
comply with ideality [18].
We thus find that ECM predicts just three kinds of

complex-mass nonets: GMO, S and I. Each of them defines
three kinds of connections between real quantities:

1. between real parts of the complex-mass squared: the
mass formulae;

2. betweenmasses and widths of the particles: defining the
flavor stitch line of the masses on the complex plane;

3. between imaginary parts of the complex-mass squared:
width sum rules.

An important property of the mass formulae for the nonet
of any kind is their independence of the particle widths
and coincidence with respective mass formulae for the real-
mass meson nonet. Therefore, the complex-mass meson
nonets may be given the names of the real-mass ones:
GMO, S and I [9]. Following the property of the indepen-
dence of the mass formulae on the particle widths, also the
definitions of these nonets are independent of them; the
mesons forming different width patterns create the same
nonet, if their masses are the same. The states of the nonet
of any kind have the qq̄ structure and this structure is
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stable under anomalies of the widths. So, disagreement be-
tween expected and observed values of the f0(980) meson
widths cannot be considered as evidence against the qq̄ na-
ture of this meson.
On the contrary, the qq̄ structure of f0(980) meson is

confirmed, if we indicate the nonet that it belongs to.
Experimental fits show that the well known meson

nonets 1−−, 2++ and 3−− are the S ones. Also the less
known 1+−, 1++ and 2−+ are probably the S nonets. (Only
the pseudoscalar mesons π,K, η, η′ form the GMO nonet.)
That, and the identity of the a0(980) and f0(980) meson
masses, suggests that scalar mesons form the S nonet. We
are looking for the nonet including a0(980), K0(1430) and
f0(980) mesons. Then, the S mass formula indicates the
f0(1710) meson as the ninth member.
We recall now the main properties of the mass formula

and flavor stitch line for the S nonet. There exists one rela-
tion between the complex masses in this case.

3.2 Schwinger nonet mass formula
for finite-width mesons

The S mass formula can be written in the form [9]

(a−x1)(a−x2)+2(b−x1)(b−x2) = 0. (23)

For the |l|2 we find

|l1|
2 =
1

3

(x2−a)+2(x2− b)

x2−x1
, (24)

|l2|
2 =
1

3

(a−x1)+2(b−x1)

x2−x1
. (25)

They have to satisfy the condition |li|2 > 0. This condition
and the mass formula (23) make the particle masses com-
ply with the ordering rule:

x1 < a < x2 < b, (26)

or

a < x1 < b < x2. (27)

Table 1. The nonet of 0++mesons. The three rows containmasses; widths;mixing angle, mass
and width ordering. Subsidiary quantitiesmb =

√
b and Γb =

β
m are calculated. The large value

of Γb reflects strong “kinematical” suppression of the a0 decay. In the ordering rules a, b, x1, x2
aremasses squared;α,β, y1, y2 are products of themass andwidth.Masses andwidths are given
inMeV. Status of the particles, notation and data are quoted fromRPP [2]

mK ma m1 mb m2
JPC ΓK Γa Γ1 Γb Γ2
particles θGMO mass ordering width ordering

0++ 1412±6 984.7±1.2 980±10 1737±11 1714±5
• a0(980)
• K0(1430) 294±23 50÷100 40÷100 380÷490 140±10
• f0(980)
• f0(1710) (33.5±2.0)◦ x1 < a < x2 < b y1 >α > y2 > β

The mixing angle ΘSch is real and totally determined by
the masses:

tan2ΘSch =
|l1|2

|l2|2
. (28)

This formula shows that also the mixing angle does not de-
pend of the widths.
The masses fit the inequality f(1710)< b, pointing out

the mass ordering (26) for this nonet. So the mass of
the f0(980) meson must be smaller than the mass of the
a0(980) one. The mass formula is well satisfied and the
mixing angle (θ = 33.5±2)◦ is close to ideal. For f0(1710)
almost pure the ss̄ structure is predicted.
Thus the scalar nonet looks quite ordinary. One may

wonder, however, why it is so distinct from the other ones.
This question can be explained to some extent by inspec-
tion of its flavor stitch line.

3.3 The flavor stitch line

The total widths of all physical mesons belonging to the S
nonet, as well as the subsidiary states z8 and bc, satisfy the
equation

Γk−Γl
mk−ml

= ks, (29)

where k and l (l �= k) run over a,K, x1, x2, x8, and b. Equa-
tion (29)) represents a straight line in the (m,Γ ) plane;
ks is its slope. Rectilinearity is an effect of requiring the
ME (14) to hold for complex masses, i.e. that the rela-
tions between widths, and likewise between the masses, are
completely determined by flavor interaction. The points
(m,Γ ), representing the complex masses of the individ-
ual particles, form a sequence of stitches along the straight
line. We call this the flavor stitch line (FSL).
Nonets of physical particles obey the equation of the fla-

vor stitch line when sufficiently much decay channels are
opened, so that the Γ are not sensitive to suppression of
a single mode of decay. The data suggest that this hap-
pens as all masses of the nonet are bigger than ≈ 1.5 GeV.
We refer to the width determined from FSL as the flavor
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width (FW) of a meson. In the S nonet of the less massive
particles, some of them may have the widths reduced by
additional “kinematical” mechanism(s) suppressing decay.
The outcome is the hadronic width (HW) – the quantity
which is observed in experiment. The difference between
FW and HW is a measure of the extra suppression of the
decay. Disagreement between (29) and the data is best
seen on the mass–width diagram. In this diagram FSL is
a straight line. The point (m,Γ ) of a physical state lying
below FSL exhibits the particle having a reduced width
due to a “kinematical” mechanism. Probably in most cases
it is really kinematical (conservation laws, selection rules,
phase space etc.), but there are also possible other (known
or unknown) mechanisms of suppression; among them also
the dynamical ones. In the same way the point (m,Γ ) of
the physical particle lying over FSL would exhibit the en-
hanced decay. Obviously, definition of the S nonet is invari-
ant upon “kinematical” suppression.
The slope ks of the FSL is not predicted by the model.

It can be determined only with the help of the experimental
data. From the nonets where the data are sufficient, we find

ks =−0.5±0.1. (30)

The value of ks is firmly determined when all points (m,Γ )
of the physical particles lie on a straight line. Also we can
approximately (not so definite) determine it, using data on
two particles, if we are convinced that their decays are not
suppressed. One of the reasons for such a conviction ism>
1.5 GeV.
The mass–width diagram of the 0++ nonet is shown

in Fig. 1. An approximate FSL is determined by the (m,Γ )
coordinates of the K0(1430) and f0(1710) mesons. Its
slope, ks = −0.56, is typical for the S nonets (30). The
FW of f0(980) meson, Γ ≈ 535MeV, is consistent with
the once predicted width Γ qq̄ of the f0(980) meson, (2).

Fig. 1. Mass–width diagram of the 0++ nonet. On the axes
m and Γ are given in GeV. The approximate flavor stitch line
is drawn according to the coordinates of the K0(1430) and
f0(1710) mesons. The large deficit of the f0(980) and a0(980)
widths demonstrates strong “kinematical” suppression of their
decays. Equal rates of the suppression emphasize its flavor in-
dependence

According to Fig. 1, the FW of the a0(980) meson is the
same. The observed HW are 40÷ 100MeV for f0(980),
and 50÷100MeV for a0(980); so their HW and suppres-
sion rates are also the same. Equality of the suppression
rates of the isovector and isoscalar meson decays is quite
exceptional in the low lying nonets. In other nonets (ex-
cept of the “kinematically” unsuppressed 3−−) these rates
are different. This suggests that for both, the a0(980) and
the f0(980) mesons works the same suppression mechan-
ism and so it is isospin independent. Another feature of
this mechanism is that it does not change the masses,
but this only confirms the “kinematical” nature of the
suppression.
So what can be the physical nature of the suppression?

Our analysis does not answer this question. Perhaps we
should turn to those effects which, according to current
opinion, can modify properties of the scalar mesons like
confinement, vacuum effects, violation of the chiral sym-
metry, ...

4 Decuplet of mesons. Glueball mixing

4.1 The masses, widths and flavor stitch line

The decuplet of the meson states is a reducible representa-
tion of SU(3)F symmetry:

10 = 8⊕1⊕1. (31)

It arises by joining an additional singlet with a nonet. Be-
low, the singlet is considered as a glueball and the nonet as
a qq̄ system, but it is not necessary to specify them. We call
the latter a “basic nonet” of the decuplet.
ECM gives the unique possibility of a simple and

transparent description of the multiplets of complex-mass
mesons. The description of a decuplet is, in essence, iden-
tical with the description of the nonet and is based on
the same ME (c.f. (5)), but with the octet state |z8〉
given by (12). We thus have to solve the system of linear
equations

|l1|
2zj1+ |l2|

2zj2+ |l3|
2zj3 =

1

3
ajc+

2

3
bjc (j = 0, 1, 2, ...),

(32)

with respect to the |li|2 (c.f. (14)). The solution can exist
if the number of equations is three or more. We postulate
four equations, i.e. the vanishing of three exotic commuta-
tors. A nonet satisfying this system of exotic commutators
is ideal; in the decuplet, the ideal structure of the basic
nonet states is violated due to mixing with the glueball. We
say that the basic nonet of the decuplet is ideal.
For the system of four equations (32) we have one solv-

ability condition relating the complex masses of the decu-
plet. It will be seen further that this relation, along with
the requirement of positivity of the |li|2, leads to the mass
ordering rule as another necessary condition of solvabil-
ity. The ordering rule and the mass formula help much in
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completing the decuplet, making the procedure simple and
transparent.
The solution of (32) is

|l1|
2 =
1

3

(z2−ac)(z3−ac)+2(z2− bc)(z3− bc)

(z1− z2)(z1− z3)
,

(33)

|l2|
2 =
1

3

(z1−ac)(z3−ac)+2(z1− bc)(z3− bc)

(z2− z1)(z2− z3)
,

(34)

|l3|
2 =
1

3

(z1−ac)(z2−ac)+2(z1− bc)(z2− bc)

(z3− z1)(z3− z2)
, (35)

provided the complex masses of the particles satisfy the
equation

M
def
= (z1−ac)(z2−ac)(z3−ac)

+2(z1− bc)(z2− bc)(z3− bc)

= 0. (36)

The |li|2must be real numbers. It can easily be seen that all
Im|li|2 = 0 if the equations (c.f. (29))

yi−yj
xi−xj

=
yi−α

xi−a
=
yi−β

xi− b
=
α−β

a− b
= ks (37)

are satisfied for all i, j (j �= i) running over z1, z2, z3 and z8.
These equations define the FSL of the complex-mass

meson decuplet. The points (m2,mΓ ) of all mesons belong-
ing to the decuplet, as well as of the subsidiary states z8
and bc, lie on the straight line with slope ks in the (m

2,mΓ )
plane. Obviously, the points (m,Γ ) corresponding to these
mesons lie in the plane (m,Γ ) on the straight line with the
same slope.
The last equation, (37), shows that ks can be defined

by the parameters of the a and K mesons: the slope of
the decuplet FSL is identical with the slope of the basic
nonet one; joining the additional singlet does not change
the slope of FSL, nor the stitch line. Also the other proper-
ties of the decuplet and the basic nonet are the same:

1. linearity follows from flavor symmetry and departures
from it are a result of “kinematical” suppression (en-
hancement) of the decay, and

2. the slope ks is not predicted and can only be determined
by the data.

Using (37) we transform (33)–(35) into

|l1|
2 =
1

3

(x2−a)(x3−a)+2(x2− b)(x3− b)

(x1−x2)(x1−x3)
, (38)

|l2|
2 =
1

3

(x1−a)(x3−a)+2(x1− b)(x3− b)

(x2−x1)(x2−x3)
, (39)

|l3|
2 =
1

3

(x1−a)(x2−a)+2(x1− b)(x2− b)

(x3−x1)(x3−x2)
. (40)

They coincide with the |li|2 for the zero-with meson decu-
plet [19–21].

Let us define now the two real functions

MR
def
= (x1−a)(x2−a)(x3−a)

+2(x1− b)(x2− b)(x3− b), (41)

MI
def
= (y1−α)(y2−α)(y3−α)

+2(y1−β)(y2−β)(y3−β). (42)

From (37) it follows that

MI = k
3
sMR. (43)

Due to (37), the real and imaginary parts of the solv-
ability condition (36) can be written in the form

ReM =MR(1−3k
2
s) = 0, (44)

ImM =MI(1−
3

k2s
) = 0. (45)

If k2s �=
1
3 , thenMR = 0. The same is true also for k

2
s =

1
3 , as

can be seen from (45) and (43). Returning to the definition
ofMR, (41), we find an explicit form of the decuplet mass
formula for finite-width mesons:

(x1−a)(x2−a)(x3−a)+2(x1− b)(x2− b)(x3− b) = 0.
(46)

It does not depend on the particle widths and is identical
with the mass formula for the zero-width mesons [20].
The equationMI = 0 determines a sum rule for the de-

cuplet particle widths:

(y1−α)(y2−α)(y3−α)+2(y1−β)(y2−β)(y3−β) = 0.
(47)

This equation is satisfied only if all points (m,Γ ) lie on the
FSL.
The right-hand parts of (38)–(40) must be positive.

This cannot be fulfilled for arbitrarymasses. Therefore, the
requirement of positivity restricts the masses. These re-
strictions along with the mass formula lead to the rule of
the mass ordering as the necessary condition of solvability
of the system (32) [19–21]:

x1 < a < x2 < b < x3. (48)

For the imaginary parts of the complex masses we have

y1 < α< y2 < β < y3. (49)

The basic nonet of the decuplet could also be chosen as
an S one. The S nonet follows from the assumption that two
exotic commutators (3) vanish. Then we would have three
ME, just enough for determining the |li|2. As we know from
fits of the meson nonets [9], the S nonet is not very differ-
ent from the I one and we hope that the properties of the
decuplets built on them are not very different. However,
choosing the S basic nonet we would be left without the
mass formula and the ordering rule. Therefore, we do not
discuss this scheme.
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To finish this section, let us note that there are no more
types of decuplet in the ME approach. For five ME (32)
there arise two complex-mass formulae; beside of (46), we
obtain

ac(z1−ac)(z2−ac)(z3−ac)+2bc(z1− bc)(z2− bc)(z3− bc)

= 0. (50)

These formulae define the ideal nonet and disconnected
unitary singlet with arbitrary mass. This result does not
change if we join the next ME, (32).

4.2 Completing the decuplet

Completing the decuplet is quite easy due to the mass or-
dering rule and the simplicity of the mass formula.
The decuplet should include the isoscalar components

not belonging to the nonet: f0(1370)(≡ z1) and f0(1500)
(≡ z2). The latter one is considered by many authors
[12–17] as the most likely glueball candidate. In the same
mass region we find the isotriplet meson a0(1450). If these
three mesons belong to the same multiplet, irrespectively
to the nonet or to the decuplet, then, according to the mass
ordering rule, their masses should obey the inequalities

x1 < a < x2. (51)

They could belong to the nonet, if there existed a K0
meson with such a mass that,

b= 2K0−a0(1450), (52)

(c.f. (9)) not much exceeds x2. Then the meson f0(1500)
would have a structure close to ss̄. Such a K0 meson is
not observed. On the other hand, nobody expects f0(1500)
to have the ss̄ structure. Therefore, the needed meson K0
should have a higher mass and the multiplet should be
a decuplet.
The only K0 candidate which may play this role is

K0(1950), still “needing confirmation”. If it is accepted,
then only one isoscalar meson f0 is lacking to complete the
decuplet. At present, several signals are announced [2]:

f0(2020), f0(2060), f0(2100), f0(2200), f0(2330). (53)

The tenth candidate should be distinguished by the value
of the mass calculated from the mass formula (46). How-
ever, on account of the large error of most of the input
masses, we first perform a qualitative discussion of the for-
mula.
An exceptionally large difference between the masses of

the a0(1450) and K0(1950) mesons, mK−ma � 500MeV,
enables us to estimate very precisely the difference x3− b.
(Notice, by the way, that such a large difference between
appropriate masses is observed also in the nonet 0++.) Ac-
cording to the mass ordering rule, this difference must be
positive. For such a large mass of K0 the difference b−a is
also large (b−a� 5.5 GeV2) and we have

x3−a≈ b−a, b−x1 ≈ b−x2 ≈ b−a. (54)

Then, from (46) we find

x3 = b+
(x2−a)(a−x1)

2(b−a)
. (55)

Following the opinion of [12–17] that the glueball domi-
nates the structure of the z2(≡ f0(1500)) meson, we ad-
mit that the light quarks dominate the structure of the
z1(≡ f0(1370)) meson; the mass of z1 should be closer to
the mass of a0 than the mass of z2 and the masses of a0, z1,
z2 mesons would satisfy the inequality

a−x1 < x2−a. (56)

So we find

b < x3 < b+
(x2−a)2

2(b−a)
, (57)

or

x3− b < 1MeV
2. (58)

The poorly known masses of K0(1950) and f0 mesons ap-
pear to be strongly correlated.
The particles creating the decuplet are mentioned in

Table 2. The last column shows the mass of the b-statemb.
The value of this mass singles out f0(2330) as the best can-
didate for the heaviest isoscalar of the decuplet.
The mass of the b-state shown in Table 2 has a large

uncertainty due to the error of the a0(1450) mass and,
especially, to the uncertainty of theK0(1950) mass. There-
fore, it may be interesting to admit another particle – the
f0(2200) – as the third isoscalar component and construct
an adequate decuplet. We can do this, keeping f0(1500),
the mostly glueball state with unchanged mass (the best
known mass in the decuplet) and allowing to change the
other masses as to obey the mass formula (46).
Table 3 shows these two possible decuplets. Besides the

masses of the particles also are shown the octet contents of
the isoscalar mesons. A common feature of these two solu-
tions of the ME is the small value of |l2|2. This follows from
the assumption that f0(1500) meson is mostly the glueball
state. The mixing matrices belonging to these solutions are
presented in the next section and denoted by V1 and V2.

4.3 Mixing matrix

Joining the glueball state with the quark nonet states
raises the problem of constructing the mixing matrix for
three isoscalar states. This problem was so far formulated
only for zero-width mesons. In this case, the mixing ma-
trix is obtained by diagonalizing some postulated unphys-
ical mass operator. The most general form of this operator
is simplified by additional assumptions which reduce the
number of independent parameters, to facilitate the diag-
onalization [22]. That makes the result model dependent.
It would be still more difficult to obtain any result for the
finite-width meson decuplet in this way.
ECM provides another procedure of constructing the

mixing matrix. It is based on the solution of the ME (14)
given by |l1|2, |l2|2, |l3|2, see (38)–(40), defining the octet
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Table 2. The decuplet of scalar mesons. The decuplet is formed out of the mesons satisfying
the decuplet mass formula (46). Three of them are well known. The remaining two (K0 and
f0(2330)) have not firmly been established. Their masses are strongly correlated which sup-
ports them mutually as candidates to the decuplet. The predicted ordering rules for masses
and widths are given in the last row. The width ordering rule cannot be verified with the
present data. For notation, see the caption of the Table 1

mK ma m1 m2 m3 mb
0++ ΓK Γa Γ1 Γ2 Γ3 Γb
particles mass ordering width ordering

• a0(1450) 1945±30 1474±19 1200÷1500 1507±5 2330 2325±92
K0(1950)

• f0(1370) 201±113 265±13 200÷500 109±7 220
• f0(1507)
f0(2330) x1 < a < x2 < b < x3 y1 >α > y2 > β > y3

Table 3. Two possible solutions of the ME (46) for decuplet adequate to the choice of the
f0(2330) and f0(2200) meson as the heaviest isoscalar state. In both cases the solution is chosen
such that f0(1500) is mostly glueball. One can see that the small content of the octet state is the
signature of a glueball. Masses are given in MeV. Notation and data are quoted from RPP [2]

Solution mK ma m1 m2 m3
number |l1|

2 |l2|
2 |l3|

2

1 1945.0 1474.0 1465.0 1505.98 2322.45
0.25668 0.07691 0.66642

2 1870.0 1460.0 1443.0 1507.66 2205.34
0.23841 0.09590 0.66569

contents of the isoscalar mesons [19, 21]. There is no need
for introducing the mass operator nor making assumptions
about the mixing mechanism, except the natural conjec-
ture about the flavor independence of the glueball. The
octet contents are expressed by physical masses and noth-
ing else. The method enables one to construct equally easy
the mixing matrix both for zero-width particles and finite-
width ones. We will calculate it in the latter case.
Let us introduce the mixing matrix U transforming

isoscalar states of exact SU(3)F symmetry into the physi-
cal ones: ⎡

⎣|z1〉|z2〉
|z3〉

⎤
⎦= U

⎡
⎣|z8〉|z0〉
|G〉

⎤
⎦ , (59)

where z0 is a qq̄ singlet and G is a glueball. For complex-
mass particles the matrix is, in general, unitary:

U =

⎡
⎣ c1 −s1c2 s1s2
s1c3 c1c2c3− s2s3eiδ −c1s2c3− c2s3eiδ

s1s3 c1c2s3+ s2c3e
iδ −c1s2s3+ c2c3eiδ

⎤
⎦ . (60)

Here cj = cosϑj ; sj = sinϑj ; j = 1, 2, 3; ϑj are the Euler an-
gles: 0≤ ϑ1 < π; 0≤ ϑ2, ϑ3 < 2π; δ is an arbitrary phase.
The elements of the first column are l1, l2, l3, i.e., the coeffi-
cients which were introduced in (12). The squared absolute
values of these coefficients are the solutions (38)–(40) of the
system (32). Therefore, we have

c1 =±
√
|l1|2; s1c3 =±

√
|l2|2; s1s3 =±

√
|l3|2. (61)

Thus the angles ϑ1 and ϑ3 are determined by the masses up
to the signs of c1, c3, s3.
To compare the predictions with the data, the mixing

matrix is usually expressed in the basis of the ideal nonet
states

|N〉=
1
√
2
|(uū+dd̄)〉, |S〉= |ss̄〉. (62)

The physical isoscalar states are⎡
⎣|z1〉|z2〉
|z3〉

⎤
⎦= V

⎡
⎣|N〉|S〉
|G〉

⎤
⎦ , (63)

where

V = UQ, (64)

and the matrix Q,

Q=

⎡
⎢⎢⎣
1√
3

−
√
2
3 0√

2
3

1√
3

0

0 0 1

⎤
⎥⎥⎦ , (65)

transforms the two bases⎡
⎣|z8〉|z0〉
|G〉

⎤
⎦=Q

⎡
⎣|N〉|S〉
|G〉

⎤
⎦ . (66)
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The explicit form of the matrix V is

V =

⎡
⎢⎢⎢⎣

1√
3
c1−
√
2
3s1c2 −

√
2
3c1−

1√
3
s1c2 s1s2

1√
3
s1c3+

√
2
3 (c1c2c3− s2s3e

iδ) −
√
2
3s1c3+

1√
3
(c1c2c3− s2s3eiδ) −c1s2c3− c2s3eiδ

1√
3
s1s3+

√
2
3 (c1c2s3+ s2c3e

iδ) −
√
2
3s1s3+

1√
3
(c1c2s3+ s2c3e

iδ) −c1s2s3+ c2c3eiδ

⎤
⎥⎥⎥⎦ (67)

The angle ϑ2 can also be determined if flavor independence
of the glueball is imposed:

〈uū|m2|G〉= 〈dd̄|m2|G〉= 〈ss̄|m2|G〉. (68)

For the state |z8〉 this reads

〈z8|m
2|G〉= 0. (69)

Substituting here |z8〉 and |G〉, expressed from (59) and
(60), we find the following equation for ϑ2:

tanϑ2 = e
−iδ c3s3

c1

z3− z2
(z3− z1)− (z3− z2)c23

. (70)

Separation of the real and imaginary parts of zi leads, after
obvious modifications, to the same equation, with zi re-
placed by xi. In this equation, e

−iδ is the only complex
number. Therefore, δ = 0 and ϑ2 is completely determined
by the masses:

tanϑ2 =
c3s3

c1

x3−x2
(x3−x1)− (x3−x2)c23

. (71)

V is now orthogonal matrix. It is independent of the
particle widths, has no free parameters and is identical
to the mixing matrix of the isoscalar zero-width particle
states [19, 21].
Thus only signs of the trigonometric functions cj , sj re-

main to determine. We can choose them in the following
way. Three elements of the mixing matrix, V11, V13, V32,
may be chosen positive. Then,
s1 > 0, since 0≤ ϑ1 < π;
c1 > 0, c2 < 0, if we expect |z1〉 ≈ |N〉 with V11 > 0;
s2 > 0, as V13 > 0;
s3 < 0, c3 > 0, if we expect |z2〉 ≈ |S〉 with V32 > 0.

This choice of signs is consistent with (71).
The mixing matrices for the solutions mentioned in

Table 3 read

V1 =

⎡
⎣0.88472 0.00510 0.46609
0.46612 −0.01005 −0.88466
0.00018 0.99994 −0.01127

⎤
⎦ , (72)

V2 =

⎡
⎣0.86100 0.01081 0.50849
0.50861 −0.01964 −0.86077
0.00069 0.99975 −0.02241

⎤
⎦ . (73)

4.4 Properties of the solutions

Solution of the ME for a decuplet consists of a mass
formula connecting five masses and three expressions for
|li|2’s which determine the octet contents of the three
isoscalar components. The latter are used for construct-
ing the mixing matrix. This approach already has been
applied for investigating the decuplets of the zero-width
mesons [19–21, 23–26]. It remains unchanged for the finite-
widths mesons.
Specifically for the 0++ decuplet, the properties of the

solution are dominated by the large difference between the
masses of the a0(1450) andK0(1950) mesons. This implies
x3 � b and enables us to make amotivated choice of f0 from
among (53). The Table 3 and the matrices V1 and V2 dis-
play two solutions of the ME corresponding to different f0.
The solutions confirm the connection between the range of
indefiniteness of the mass of K0(1950) and the mass range
2200÷2400 of f0. The predicted properties of the solutions
are similar, because the input masses of f0 differ from one
another much less than the masses of the a0(1450) and
K0(1950) mesons. Table 2 and the matrices V1 and V2 also
show that it would be difficult to make a choice between
the signals (53), based only on the properties of the mixing
matrix.
Another consequence of the large difference between

the masses of a0(1450) andK0(1950) is that the third f0 is
a pure ss̄-state. Therefore, theG-state is included only into
the f0(1370)- and f0(1500)-states. Its distribution is de-
termined by the relations between the masses of the three
mesons: f0(1370), a0(1450) and f0(1500). Precise know-
ledge of these masses is sufficient for a complete determin-
ation of the mixing matrix. As the present data are not
accurate enough, we are guided in constructing the matrix
V1 and V2 by the qualitative suggestion thatG is contained
mainly in the state of f0(1500). However, with the present
data it is also possible, with a suitable choice of the masses,
that G is contained mainly in the f0(1370)-state.

5 Summary and discussion

In this paper we discuss only the flavor properties of the
scalar mesons imposed by broken SU(3)F symmetry. We
extract as many predictions from this symmetry as pos-
sible and verify their consistency with the data. We nei-
ther consider the quark dynamics, nor the structure of the
particles; in particular, we do not discuss the problem of
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the structure of the higher lying multiplet (decuplet) (are
they excited qq̄-states, hybrid qq̄g-states or something else
[3, 27]?). Our approach does not require information about
the structure of the components of the multiplet, but we
hope that it may help in determining them.
The predictions of the flavor symmetry can be obtained

by means of the exotic commutator method (ECM) of
breaking the unitary symmetry. The requirement of disap-
pearing of the matrix elements of these commutators be-
tween one-particle octet states gives the system of master
equations (ME) which determine the octet contents of the
isoscalar physical states. The ME include all information
attainable for the multiplets of 0++ mesons. By solving
them, we obtain not only all relations for these multiplets
that are already known, but also the new ones. In par-
ticular, we get the relations for the nonet and decuplet of
the finite-width mesons which were unknown before. The
only parameters of the ME are physical masses and widths
of the mesons. Therefore, the predictions do not depend
on free parameters, additional assumptions or unphysical
quantities. ECM provides the unique possibility for inves-
tigating the implications of the flavor symmetry in its pure
and separated form.
ECM distinguishes three types of zero-width nonets:

Gell-Mann–Okubo (GMO), Schwinger (S) and ideal (I)
ones. They are defined as satisfying the corresponding
mass formulae. For the finite-width nonets the mass formu-
lae are also independent of the widths of the particles and
are identical with those for the zero-width mesons. There-
fore, we may keep the same definitions and names for them.
Data show that all (with one exception) known nonets are
of the type S. We consider this observation as an experi-
mental fact and use it for choosing the candidate to the
scalar nonet.
The mesons a0(980), f0(980) andK0(1430) are natural

candidates to the nonet. The Smass formula singles out the
f0(1710) as the ninth member of the nonet. This does not
contradict the known properties of this particle, because it
is recognized as an ss̄-state [17]. So these particles form a
usual S nonet. Such an assignment cannot be affected by
the width anomalies of the f0(980) and a0(980)mesons, be-
cause the definition of the nonet does not depend on the
widths. Therefore, these anomalies cannot serve as an ar-
gument for introducing the exotic multiplet but should be
explained on the basis of the qq̄ structure.
The flavor symmetry predicts that all particles belong-

ing to the S nonet form the straight flavor stitch line in the
(m,Γ ) plane. The data show that the slope of the stitch
line is negative. The linearity may, however, be broken (for
some particles having masses smaller than � 1.5GeV), if
the usual flavor-conditioned decay is distorted by some
“kinematical” mechanism. Such a kind of mechanism sup-
presses the decays of the f0(980) and a0(980) mesons. We
know some of its properties: the suppression is strong; it
does not depend on the masses; it is independent of the
isospin. But the present approach does not identify its na-
ture. The riddle of the scalar mesons remains.
Obviously, with this “kinematical” mechanism sup-

pressing the f0(980) and a0(980) decays, the investigation
of the δI=0J=0 and δ

I=1
J=0 phases in the resonance region does

not yield information about the properties of the flavor
symmetry.
Let us now discuss the decuplet. The decuplet is a real

object – as real as the nonet. It is a multiplet whose
isoscalar octet state is distributed among three isoscalar
physical states. Its properties, as well as the properties of
the nonet, are defined by ME. The number of equations
may be chosen in such a way that the masses satisfy the
mass formula. With such a choice, the mass formula plays
the role of a necessary condition of the solvability of the
ME. The formula does not depend on the widths of the par-
ticles. The solution of the ME, |li|2 (i= 1, 2, 3), serves for
constructing the mixing matrix of the decuplet. The ma-
trix is based exclusively on the solution and is real for real
masses as well as for complex ones. Its elements depend
only on the masses. The particles of the decuplet states
form the straight flavor stitch line on the (m,Γ ) plane, just
as do the S nonet ones.
The decuplet includes the mesons a0(1450), K0(1950),

f0(1370) and f0(1500). The missing f0 has a mass some-
where in the region 2200÷2400MeV. The mass is strongly
correlatedwith the mass ofK0(1950). Its vagueness reflects
the inaccuracy of the K(1950) mass and the error of the
a0(1450) one. This meson is almost a pure ss̄-state; there-
fore the state G is almost completely distributed between
the f0(1370) and f0(1500) mesons. The G content of each
of these particles is determined by relations between the
f0(1370), a0(1450) and f0(1500) masses. Thus the know-
ledge of these three masses is sufficient for approximately
evaluating the whole mixing matrix.
The fit of the flavor stitch line should be a necessary

element of the present investigation. One can expect a
good fit, as the masses of the decuplet particles are large
enough. The extra information about the widths would be
especially welcome for the f0(1370) and f0(1500) mesons,
which are expected to include a glueball. However, the cur-
rent data are too crude for that. More data and a better
understanding of the decay processes are desirable [28].
In general, consistency of the mixing parameters pre-

dicted from the decuplet masses with the results of the an-
alysis of the isoscalar mesons production and decay would
provide the requested ultimate evidence ofG.
The mass regions of the nonet and decuplet are over-

lapping. However, such a situation should not be treated
as an obstacle for accepting the proposed distribution of
the particles between the multiplets. We may prefer to
follow the data rather than the habitual mixing the ad-
jacent states. The 0++ nonet mesons well satisfy the S
mass formula. This suggests that mixing between the nonet
and decuplet states is negligible. A similar situation can
be seen for the 1−− multiplets: the ground state nonet
(ρ,K∗, ω, φ) is ideally mixed, while the higher lying states
(ρ(1450),K∗(1410), φ(1420)) form the octet of exact sym-
metry [9]. That could not happen if there were a remark-
able mixing between these multiplets. We can also notice
that for many JPC not only the ground state multiplet is
observed, but also the higher one; it would be impossible to
distinguish separate multiplets if the mixing were strong.
For the S nonet and decuplet, apart from the mass for-

mulae, there exist other necessary solvability conditions of
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the ME. They have the form of the mass ordering rule. For
the 0++ nonet we have

x1 < a < x2 < b,

while for the 0++ decuplet it is

x1 < a < x2 < b < x3.

These rules are very useful in investigating the nonet and
decuplet of the scalar multiplets.
They throw also some light on the problem of the

σ(600) meson. According to these rules, the nonet of the
0++ mesons cannot be transmuted into a decuplet by join-
ing the scalar meson with a mass smaller than the one
of the f0(980). Therefore, σ(600) cannot be considered as
a decuplet component and is a separate state. It may be
a genuine particle state (then it would be the ground state
unitary singlet), or it may be a state of a different kind.
A possibility that the nature of the σ(600) is different from
the nature of the other scalarmesons has been discussed for
some time [29–31].

6 Conclusion

1. The most complete description of the meson multi-
plets (nonet and decuplet) is given by the master equa-
tions (ME) which are derived from the hypothesis of
vanishing of the exotic commutators. For the finite-
width mesons they reveal the features which were not
known before. These features enable us to understand
the mass spectrum of the scalar mesons.

2. The 0++ mesons form the nonet (a0(980), K0(1430),
f0(980), f0(1710)), the decuplet (a0(1450), K0(1950),
f0(1370), f0(1500), f0(2200÷ 2400)) and a separate
state σ(600).

3. There are no q2q̄2 exotics. The nonet mesons satisfy the
Schwinger mass formula and are the usual qq̄-states.
Anomalies of the f0(980) and a0(980) widths are caused
by some “kinematical” mechanism which suppresses
their decay. The energy dependence of the phases δI=0J=0
and δI=1J=0 do not reflect properties of the flavor interac-
tion. The nature of the suppression mechanism remains
unknown.

4. The decuplet includes the glueball state. The mass for-
mula and mixing matrix of the decuplet isoscalar phys-
ical states follow directly from the solution of the ME.
The glueball is included in the states of the f0(1370)
and f0(1500) mesons. Its contribution to these states
is completely determined by the masses of the decuplet
particles. Agreement between the quark–glueball struc-
tures of the isoscalar physical states, determined in this
way, and their production and decay patterns would
provide the ultimate identification of the glueball.

5. The meson σ(600) cannot be mixed with the nonet
(a0(980), K0(1430), f0(980), f0(1710)) to form a decu-
plet. This may support the conjecture about the pecu-
liar nature of this particle.
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